Physical limits on cellular directional mechanosensing.
نویسندگان
چکیده
Many eukaryotic cells are able to perform directional mechanosensing by directly measuring minute spatial differences in the mechanical stress on their membranes. Here, we explore the limits of a single mechanosensitive channel activation using a two-state double-well model for the gating mechanism. We then focus on the physical limits of directional mechanosensing by a single cell having multiple mechanosensors and subjected to a shear flow inducing a nonuniform membrane tension. Our results demonstrate that the accuracy in sensing the mechanostimulus direction not only increases with cell size and exposure to a signal, but also grows for cells with a near-critical membrane prestress. Finally, the existence of a nonlinear threshold effect, fundamentally limiting the cell's ability to effectively perform directional mechanosensing at a low signal-to-noise ratio, is uncovered.
منابع مشابه
The Role of Actin Networks in Cellular Mechanosensing
Title of dissertation: THE ROLE OF ACTIN NETWORKS IN CELLULAR MECHANOSENSING Mikheil Azatov, Doctor of Philosophy, 2015 Dissertation directed by: Professor Arpita Upadhyaya Department of Physics Institute for Physical Sciences and Technology Physical processes play an important role in many biological phenomena, such as wound healing, organ development, and tumor metastasis. During these proces...
متن کاملActin cap associated focal adhesions and their distinct role in cellular mechanosensing
The ability for cells to sense and adapt to different physical microenvironments plays a critical role in development, immune responses, and cancer metastasis. Here we identify a small subset of focal adhesions that terminate fibers in the actin cap, a highly ordered filamentous actin structure that is anchored to the top of the nucleus by the LINC complexes; these differ from conventional foca...
متن کاملRole of molecular turnover in dynamic deformation of a three-dimensional cellular membrane
In cells, the molecular constituents of membranes are dynamically turned over by transportation from one membrane to another. This molecular turnover causes the membrane to shrink or expand by sensing the stress state within the cell, changing its morphology. At present, little is known as to how this turnover regulates the dynamic deformation of cellular membranes. In this study, we propose a ...
متن کاملAspiration of biological viscoelastic drops.
Spherical cellular aggregates are in vitro systems to study the physical and biophysical properties of tissues. We present a novel approach to characterize the mechanical properties of cellular aggregates using a micropipette aspiration technique. We observe an aspiration in two distinct regimes: a fast elastic deformation followed by a viscous flow. We develop a model based on this viscoelasti...
متن کاملElastic interactions of active cells with soft materials.
Anchorage-dependent cells collect information on the mechanical properties of the environment through their contractile machineries and use this information to position and orient themselves. Since the probing process is anisotropic, cellular force patterns during active mechanosensing can be modeled as anisotropic force contraction dipoles. Their buildup depends on the mechanical properties of...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Physical review. E, Statistical, nonlinear, and soft matter physics
دوره 87 5 شماره
صفحات -
تاریخ انتشار 2013